Elixir实战:5 并发原语 (4)运行时考虑事项
zhezhongyun 2025-01-05 21:29 77 浏览
5.4 运行时考虑事项
你已经学到了很多关于如何处理进程的知识。现在,是时候讨论一下 BEAM 并发的一些重要运行时属性了。
5.4.1 一个过程是顺序的
已经提到过,但这非常重要,所以我再强调一遍:单个进程是一个顺序程序——它按顺序逐个运行表达式。多个进程并发运行,因此它们可能会相互并行运行。但是,如果许多进程向单个进程发送消息,那么这个单个进程可能会成为瓶颈,这会显著影响系统的整体吞吐量。
让我们看一个例子。以下列表中的代码实现了一个慢回声服务器。
清单 5.13 过程瓶颈的演示 (process_bottleneck.ex)
defmodule Server do
def start do
spawn(fn -> loop() end)
end
def send_msg(server, message) do
send(server, {self(), message})
receive do
{:response, response} -> response
end
end
defp loop do
receive do
{caller, msg} ->
Process.sleep(1000) ?
send(caller, {:response, msg}) ?
end
loop()
end
end? 模拟长时间处理
? 将消息回显
在接收到消息后,服务器将消息发送回调用者。在此之前,它会暂停一秒钟以模拟一个长时间运行的请求。
为了测试其在并发环境中的行为,启动服务器并启动五个并发客户端:
iex(1)> server = Server.start()
iex(2)> Enum.each(
1..5,
fn i ->
spawn(fn -> ?
IO.puts("Sending msg ##{i}")
response = Server.send_msg(server, i) ?
IO.puts("Response: #{response}")
end)
end
)? 生成一个并发客户端
? 同步请求服务器
一旦您开始这个,您将看到以下行被打印:
Sending msg #1
Sending msg #2
Sending msg #3
Sending msg #4
Sending msg #5到目前为止,一切顺利。五个进程已经启动并同时运行。但现在,问题开始了——响应慢慢返回,一个接一个,相隔一秒。
Response: 1 ?
Response: 2 ?
Response: 3 ?
Response: 4 ?
Response: 5 ?? 一秒钟后
? 两秒钟后
三秒钟后
? 四秒钟后
五秒钟后
发生了什么?回声服务器每秒只能处理一个消息。因为所有其他进程都依赖于回声服务器,所以它们受到其吞吐量的限制。
你能对此做些什么?一旦你识别出瓶颈,就应该尝试在内部优化流程。通常,服务器进程的流程很简单。它逐个接收和处理消息。因此,目标是使服务器处理消息的速度至少与消息到达的速度相同。在这个例子中,服务器优化相当于去掉 Process.sleep/1 调用。
如果你无法快速处理消息,可以尝试将服务器拆分为多个进程,有效地并行化原始工作,并希望这样做能在多核系统上提升性能。不过,这应该是你的最后手段。并行化并不是解决结构不良算法的良方。
5.4.2 无限过程邮箱
理论上,进程邮箱的大小是无限的。然而在实践中,邮箱的大小受到可用内存的限制。因此,如果一个进程不断落后,意味着消息到达的速度快于进程处理的速度,邮箱将不断增长并越来越消耗内存。最终,一个单一的慢进程可能会通过消耗所有可用内存导致整个系统崩溃。
如果一个进程根本不处理某些消息,则会出现更微妙的同样问题。考虑以下服务器循环:
defp loop
receive do
{:message, msg} -> do_something(msg)
end
loop()
end由此循环驱动的服务器仅处理以下形式的消息: {:message, something} 。所有其他消息将永远保留在进程邮箱中,无故占用内存空间。
过度增长的邮箱内容会显著影响性能。它给垃圾收集器带来了额外的压力,并可能导致在 receive 中模式匹配变慢。
为了避免这种情况,您应该引入一个匹配所有接收的条款,以处理意外类型的消息。通常,您会发出警告,表示某个进程已接收到未知消息,并且不再采取其他措施:
defp loop
receive
{:message, msg} -> do_something(msg)
other -> warn_about_unknown_message(other) ?
end
loop()
end? 匹配所有条款
由于该过程处理所有类型的消息,因此其邮箱的无控制增长不太可能发生。
值得注意的是,BEAM 为您提供了在运行时分析进程的工具。特别是,您可以查询每个进程的邮箱大小,从而检测邮箱队列积累发生的进程。我们将在第 13 章讨论此功能。
5.4.3 无共享并发
如前所述,进程之间不共享内存。因此,向另一个进程发送消息会导致消息内容的深拷贝:
send(target_pid, data) \ ?数据的内容是深度复制的。
不那么明显的是,在生成的元素中,变量闭包也会导致闭合变量的深拷贝
data = ...
spawn(fn ->
...
some_fun(data) ?
...
end)结果是数据变量的深拷贝
在将代码移入单独进程时,您应该注意这一点。深拷贝是内存中的操作,因此应该相对快速,偶尔发送大消息不应成为问题。但是,多个进程频繁发送大消息可能会影响系统性能。“小”和“大”的概念是主观的。简单数据,例如数字、原子或包含少量元素的元组,显然是小的。另一方面,包含一百万个复杂结构的列表则是大的。界限在两者之间,具体取决于您的特定情况。
在某些特殊情况下,数据是通过引用复制的。这发生在大于 64 字节的二进制数据(包括字符串)、硬编码常量(也称为字面量)以及通过 :persistent_term API 创建的术语(https://www.erlang.org/doc/man/persistent_term.xhtml)。
共享无状态并发确保进程之间的完全隔离:一个进程无法影响另一个进程的内部状态。这促进了系统的完整性和容错性。
此外,由于进程之间不共享内存,垃圾回收可以在进程级别进行。每个进程获得一小块初始堆内存(在 64 位 BEAM 上约为 2 KB)。当需要更多内存时,该进程会进行垃圾回收。因此,垃圾回收是并发和分布式的。与其进行一次大型的“停止整个系统”的回收,不如进行许多较小、通常更快的回收。这防止了不必要的长时间完全阻塞,并使整个系统保持更高的响应性。
5.4.4 调度器内部工作原理
通常,可以假设有 n 个调度程序运行 m 个进程,其中 m 通常远大于 n。这被称为 m:n 线程模型,它反映了您使用较少的操作系统线程运行大量逻辑微线程的事实,如图 5.3 所示。
每个 BEAM 调度器都是一个操作系统线程,负责管理 BEAM 进程的执行。默认情况下,BEAM 仅使用与可用逻辑处理器数量相同的调度器。您可以通过各种 Erlang 模拟器标志更改这些设置。
要提供 Erlang 标志,您可以使用以下语法:
$ iex --erl "put Erlang emulator flags here"所有 Erlang 标志的列表可以在 https://erlang.org/doc/man/erl.xhtml 找到。
例如,要使用仅一个调度线程,您可以提供 +S 1 Erlang 标志:
$ iex --erl "+S 1"
Erlang/OTP 26 [erts-14.0] [source] [64-bit] [smp:1:1] [ds:1:1:10]注意输出中的 smp:1:1 部分。这告诉我们只使用了一个调度线程。您还可以通过编程方式检查调度器的数量:
iex(1)> System.schedulers()
1如果您在系统上运行其他外部服务,可以考虑减少 BEAM 调度程序线程的数量。这样做将为非 BEAM 服务留出更多计算资源。
在内部,每个调度器选择一个进程,运行一段时间,然后选择另一个进程。在调度器中,进程获得大约 2,000 次函数调用的小执行窗口,之后会被抢占。值得一提的是,在某些情况下,长时间运行的 CPU 密集型工作或更大的垃圾回收可能会在另一个线程上执行(称为脏调度器)。
如果一个进程正在进行网络 IO 或等待消息,它会将执行权交给调度器。当调用 Process.sleep 时也会发生同样的事情。因此,您不必关心进程中执行工作的性质。如果您想将一个函数的执行与其余代码分开,只需在一个单独的进程中运行该函数,无论该工作是 CPU 密集型还是 IO 密集型。
由于所有这些原因,上下文切换频繁进行。通常,一个进程在调度器中的时间少于一毫秒。这促进了基于 BEAM 的系统的响应能力。如果一个进程执行一个长时间的 CPU 密集型操作,例如计算π的值到十亿位小数,它不会阻塞整个调度器,其他进程也不应受到影响。
这可以很容易地证明。只需启动一个带有一个调度线程的 iex 会话:
$ iex --erl "+S 1"生成一个运行无限 CPU 绑定循环的进程:
iex(1)> spawn(fn ->
Stream.repeatedly(fn -> :rand.uniform() end)
|> Stream.run()
end)此代码使用 Stream.repeatedly/1 创建一个懒惰的无限随机数流。该流通过 Stream.run/1 函数执行,这将有效地运行一个无限的 CPU 绑定循环。为了避免阻塞 iex shell 会话,工作在一个单独的进程中完成。
一旦您开始这个计算,您应该注意到 CPU 使用率达到 100%,这证明您现在正在运行一个密集的、长时间的 CPU 绑定工作。
尽管 BEAM 仅使用一个调度线程,但 iex 会话仍然是响应式的,您可以评估其他表达式。例如,让我们对前 1,000,000,000 个整数求和:
iex(2)> Enum.sum(1..1_000_000_000)
500000000500000000我们能够在一个已经繁忙的调度线程上运行另一个任务,并且该任务几乎立即完成。这是频繁上下文切换的结果,它确保偶尔的长时间运行任务不会显著影响整个系统的响应能力。
摘要
- BEAM 进程是一个轻量级的并发执行单元。进程是完全隔离的,且不共享内存。
- 进程可以通过异步消息进行通信。同步发送和响应是在这个基本机制之上手动构建的。
- 服务器进程是一个长时间运行(可能永远运行)的进程,处理各种消息。服务器进程由无尽的递归驱动。
- 服务器进程可以使用无尽递归的参数维护自己的私有状态。
相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
