百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

[seaborn] seaborn学习笔记1-箱形图Boxplot

zhezhongyun 2025-05-24 18:17 14 浏览

1 箱形图Boxplot

(代码下载) Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中用boxplot函数制作箱形图。该章节主要内容有:

  1. 基础箱形图绘制 Basic boxplot and input format
  2. 自定义外观 Custom boxplot appearance
  3. 箱型图的颜色设置 Control colors of boxplot
  4. 分组箱图 Grouped Boxplot
  5. 箱图的顺序设置 Control order of boxplot
  6. 添加散点分布 Add jitter over boxplot
  7. 显示各类的样本数 Show number of observation on boxplot
  8. 箱形图隐藏的数据处理 Hidden data under boxplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()


sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

2

4.7

3.2

1.3

0.2

setosa

3

4.6

3.1

1.5

0.2

setosa

4

5.0

3.6

1.4

0.2

setosa

1. 基础箱形图绘制 Basic boxplot and input format

  • 一个数值变量 One numerical variable only
  • 一个数值变量和多个分组 One numerical variable, and several groups
  • 多个数值变量 Several numerical variable
  • 水平箱型图 Horizontal boxplot with seaborn
# 一个数值变量 One numerical variable only
# 如果您只有一个数字变量,则可以使用此代码获得仅包含一个组的箱线图。
# Make boxplot for one group only
# 显示花萼长度sepal_length
sns.boxplot( y=df["sepal_length"] );
# 一个数值变量和多个分组 One numerical variable, and several groups
# 假设我们想要研究数值变量的分布,但是对于每个组分别进行研究。在这里,我们研究了3种花的萼片长度。
# x花的品种,y花萼长度
sns.boxplot( x=df["species"], y=df["sepal_length"] );
# 多个数值变量 Several numerical variable
# 可以研究几个数值变量的分布,比如说萼片的长度和宽度:
sns.boxplot(data=df.iloc[:,0:2]);
# 水平箱型图 Horizontal boxplot with seaborn
# 用seaborn将你的箱图水平转动是非常简单的。您可以切换x和y属性,或使用选项orient ="h"
sns.boxplot( y=df["species"], x=df["sepal_length"] );

2. 自定义外观 Custom boxplot appearance

  • 自定义线宽 Custom line width
  • 添加缺口 Add notch
  • 控制箱的尺寸 Control box sizes
# 自定义线宽 Custom line width
# Change line width
# 根据linewidth改变线条宽度
sns.boxplot( x=df["species"], y=df["sepal_length"], linewidth=5);
# 添加缺口 Add notch
# notch设置为true即可
sns.boxplot( x=df["species"], y=df["sepal_length"], notch=True);
# 控制箱的尺寸 Control box sizes
# Change width
sns.boxplot( x=df["species"], y=df["sepal_length"], width=0.3);

3. 箱型图的颜色设置 Control colors of boxplot

  • 调色板的使用 Use a color palette
  • 单种颜色的使用 Uniform color
  • 每组的特定颜色 Specific color for each group
  • 单组高亮 Highlight a group
  • 添加透明色 Add transparency to color
# 调色板的使用 Use a color palette 
# Python提出了几种调色板。您可以像Set1,Set2,Set3,Paired,BuPu一样调用RColorBrewer调色板,还有Blues或BuGn_r等调色板。
# 调色板各种颜色见 http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/
# t通过plaette调用调色板,Use a color palette
sns.boxplot( x=df["species"], y=df["sepal_length"], palette="Blues");
# 单种颜色的使用 Uniform color
# 当然您可以轻松地为每个盒子应用同样的颜色。最常见的是b: blue
# 颜色列表 https://matplotlib.org/examples/color/named_colors.html
sns.boxplot( x=df["species"], y=df["sepal_length"], color="skyblue");
# 每组的特定颜色 Specific color for each group
# 用不用颜色描绘不同种类的花
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 单组高亮 Highlight a group
# 设定某一组为红色,其他组为蓝色
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 添加透明色 Add transparency to color
# usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df);
# Add transparency to colors 设置透明色
for patch in ax.artists:
    r, g, b, a = patch.get_facecolor()
    patch.set_facecolor((r, g, b, .3))

4. 分组箱图 Grouped Boxplot

# 当您有一个数值变量,几个组和子组时,将使用分组箱图。使用seaborn很容易实现。Y是您的数字变量,x是组列,而hue是子组列。
# 调用tips数据集
df_tips = sns.load_dataset('tips')
df_tips.head()


total_bill

tip

sex

smoker

day

time

size

0

16.99

1.01

Female

No

Sun

Dinner

2

1

10.34

1.66

Male

No

Sun

Dinner

3

2

21.01

3.50

Male

No

Sun

Dinner

3

3

23.68

3.31

Male

No

Sun

Dinner

2

4

24.59

3.61

Female

No

Sun

Dinner

4

# Grouped boxplot 分组箱图
# x日期,y餐费,hue自组列,palette调色盘
sns.boxplot(x="day", y="total_bill", hue="smoker", data=df_tips, palette="Set1");

5. 箱图的顺序设置 Control order of boxplot

#如果您按特定顺序设定组,则箱图通常会提供更多信息。这对seaborn来说是可行的。 
# specific order 通过order自定义组
p1=sns.boxplot(x='species', y='sepal_length', data=df, order=["virginica", "versicolor", "setosa"]);
# 中位数由大到小排列
# Find the order 设定中位数
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the boxplot
sns.boxplot(x='species', y='sepal_length', data=df, order=my_order);

6. 添加散点分布 Add jitter over boxplot

# 可以在箱线图上添加每种类别的散点分布情况
# Usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df)
# Add jitter with the swarmplot function 添加散点分布
ax = sns.swarmplot(x='species', y='sepal_length', data=df, color="grey")

7. 显示各类的样本数 Show number of observation on boxplot

# 显示每个组的观察次数可能很有用

# 基础的箱形图
ax = sns.boxplot(x="species", y="sepal_length", data=df)
 
# Calculate number of obs per group & median to position labels 
# 计算各个种类的中位数
medians = df.groupby(['species'])['sepal_length'].median().values
# 统计各个种类的样本数
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
 
# Add it to the plot 
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
    ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horiznotallow='center', size='x-small', color='w', weight='semibold')

8. 箱形图隐藏的数据处理 Hidden data under boxplot

  • 添加分布散点图 boxplot with jitter
  • 使用小提琴图 use violinplot

箱形图总结了几个组的数值变量的分布。但是箱形图的问题不仅是丢失信息,这可能会结果有偏差。如果我们考虑下面的箱形图,很容易得出结论,'C’组的价值高于其他组。但是,我们无法看到每个组中点的基本分布是什么,也没有观察每个组的观察次数。所以我们需要对隐藏的数据进行处理

# libraries and data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Dataset:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
 
# Usual boxplot
sns.boxplot(x='group', y='value', data=df);
# 添加分布散点图 boxplot with jitter
ax = sns.boxplot(x='group', y='value', data=df)
# 通过stripplot添加分布散点图,jitter设置数据间距
ax = sns.stripplot(x='group', y='value', data=df, color="orange", jitter=0.2, size=2.5)
plt.title("Boxplot with jitter", loc="left")
Text(0.0, 1.0, 'Boxplot with jitter')
# 使用小提琴图 use violinplot
sns.violinplot( x='group', y='value', data=df)
plt.title("Violin plot", loc="left")
Text(0.0, 1.0, 'Violin plot')

相关推荐

怎样设置EditText内部文字被锁定不可删除和修改

在做项目的时候,我曾经遇到过这样的要求,就是跟百度贴吧客户端上的一样,在回复帖子的时候,在EditText中显示回复人的名字,而且这个名字不可以修改和删除,说白了就是不可操作,只能在后面输入内容。在E...

iOS的布局体系-流式布局MyFlowLayout

iOS布局体系的概览在我的CSDN博客中的几篇文章分别介绍MyLayout布局体系中的视图从一个方向依次排列的线性布局(MyLinearLayout)、视图层叠且停靠于父布局视图某个位置的框架布局(M...

浏览器滚动条hover时变粗、改变颜色

今天应UED的要求对项目的滚动条进行美化,原生的滚动条虽然很实用,但确实不美观。用了一些css美化后::-webkit-scrollbar{height:9px;width:9...

QML控件类型:ComboBox、Control(qml buttongroup)

Control一、描述Control是所有控件通用功能的抽象基类型。它从窗口系统接收输入事件,并在屏幕上绘制自身。二、控件布局控件的implicitWidth和implicitHeight通...

学习CSS布局:简单表格布局代码示例

性能优化-学习CSS布局:简单表格布局代码示例CSS是现代Web设计和开发的必备技能之一。而表格布局是Web页面中常用的布局之一,用于展示数据和信息。在这篇文章中,我们将介绍如何使用CSS创建一个简单...

UE5之UMG基础第1篇:统一网格面板(ue5 新功能)

目标:记录和学习UE5的UMG方法制作UI,使用UniformGridPanel制作效果如下:步骤1.增加前言:UniformGridPanel统一网格面板,就是所有子元素大小和间隔等统一,这种效果...

JS的 DOM 尺寸与位置属性(js设置dom属性)

#头条深一度-深度阅读计划#在JavaScript开发中,操作DOM元素的尺寸和位置是常见的任务,尤其是在实现动画、布局调整或响应式设计时。本文将全面解析JavaScript中与DOM...

SpriteJS:图形库造轮子的那些事儿

从2017年到2020年,我花了大约4年的时间,从零到一,实现了一个可切换WebGL和Canvas2D渲染的,跨平台支持浏览器、SSR、小程序,基于DOM结构和支持响应式的,高...

理解CSS中的百分比单位:相对尺寸的核心规则

在CSS中,百分比(`%`)是一种灵活且强大的相对单位,但其具体行为常让开发者感到困惑。本文将深入解析百分比单位的计算规则,帮助你彻底掌握其背后的逻辑。一、百分比的核心:参考系(包含块)百分比的值始...

36个工作中常用的JavaScript函数片段「值得收藏」

作者:Eno_Yao转发链接:https://segmentfault.com/a/1190000022623676前言如果文章和笔记能带您一丝帮助或者启发,请不要吝啬你的赞和收藏,你的肯定是我前进的...

如何使用css完成视差滚动效果?(css 视距)

视差滚动(ParallaxScrolling)是指多层背景以不同的速度移动,形成立体的运动效果,带来非常出色的视觉体验我们可以把网页解刨成:背景层、内容层、悬浮层使用css形式实现视觉差滚动效果的方...

vant-List 列表(vant select)

引入importVuefrom'vue';import{List}from'vant';Vue.use(List);基础用法List组件通过lo...

Vue3问题:如何使用WangEditor富文本?能自定义才是真的会用!

笔者|大澈大家好,我是大澈!今天的问题,来自于上周末问题留言的朋友嘻嘻哈哈。欢迎大家在周末的问题留言推文中,积极进行问题留言,把这周工作日遇到的问题,分享给大家瞧瞧,或者直接进问答群,一起交流唠...

微信小程序开发极简入门(二):样式,页面,数据

前文:微信小程序开发极简入门(一)样式wxss:/**放在页面的wxss**/.scrollarea{flex:1;overflow-y:hidden;}.idx_view{...

AI+Code驱动的M站首页重构实践:从技术债务到智能化开发

本文分享了阿里巴巴找品M站首页重构项目中AI+Code提效的实践经验。面对M站技术栈陈旧、开发效率低下的挑战,我们通过楼层动态化架构重构和AI智能脚手架,实现了70%首页场景的标准化覆盖+30%的...