能量空间物质相互转化途径(能量与空间转换相对论公式)
zhezhongyun 2025-07-03 20:52 2 浏览
代码实现
<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>几何统一理论 - 增强标注版</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
body {
background: linear-gradient(135deg, #0f0c29, #1a1a40, #0d0d26);
color: #e0e0ff;
min-height: 100vh;
overflow-x: hidden;
padding: 20px;
line-height: 1.6;
}
.container {
max-width: 1200px;
margin: 0 auto;
}
header {
text-align: center;
padding: 20px 0;
margin-bottom: 30px;
border-bottom: 2px solid rgba(100, 150, 255, 0.4);
position: relative;
}
h1 {
font-size: 3.2rem;
margin-bottom: 15px;
background: linear-gradient(90deg, #ff7eee, #7ebcff, #4dffea);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: 0 0 20px rgba(126, 188, 255, 0.4);
letter-spacing: 1px;
}
.subtitle {
font-size: 1.4rem;
margin-top: 15px;
max-width: 800px;
margin: 15px auto 0;
color: #a0c4ff;
}
.content {
display: flex;
flex-wrap: wrap;
gap: 30px;
margin-bottom: 40px;
}
.canvas-container {
flex: 1;
min-width: 300px;
background: rgba(10, 15, 35, 0.6);
border-radius: 20px;
padding: 20px;
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.6);
border: 2px solid rgba(100, 150, 255, 0.3);
position: relative;
overflow: hidden;
}
.controls {
width: 350px;
background: rgba(15, 20, 45, 0.85);
border-radius: 20px;
padding: 25px;
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5);
border: 2px solid rgba(100, 150, 255, 0.3);
}
canvas {
background: #0a0f20;
border-radius: 15px;
width: 100%;
height: 500px;
display: block;
}
.panel-title {
font-size: 1.6rem;
margin-bottom: 25px;
color: #7ebcff;
text-align: center;
padding-bottom: 15px;
border-bottom: 2px solid rgba(100, 150, 255, 0.3);
}
.control-group {
margin-bottom: 30px;
padding: 15px;
background: rgba(20, 25, 60, 0.4);
border-radius: 12px;
}
.control-label {
display: flex;
justify-content: space-between;
margin-bottom: 12px;
font-size: 1.1rem;
align-items: center;
}
.icon {
font-size: 1.3rem;
margin-right: 10px;
}
.slider-container {
margin: 15px 0;
}
input[type="range"] {
width: 100%;
height: 10px;
background: linear-gradient(90deg, #1e1b4b, #7ebcff);
border-radius: 5px;
outline: none;
-webkit-appearance: none;
}
input[type="range"]::-webkit-slider-thumb {
-webkit-appearance: none;
width: 24px;
height: 24px;
border-radius: 50%;
background: #ff7eee;
cursor: pointer;
box-shadow: 0 0 15px rgba(255, 126, 238, 0.8);
border: 2px solid white;
}
.value-display {
font-size: 1rem;
text-align: center;
margin-top: 10px;
color: #7ebcff;
font-style: italic;
}
.button-group {
display: flex;
gap: 15px;
margin-top: 20px;
flex-wrap: wrap;
}
button {
flex: 1;
min-width: 120px;
padding: 12px;
border: none;
border-radius: 8px;
background: linear-gradient(90deg, #1e1b4b, #5e60ce);
color: white;
font-weight: 600;
font-size: 1rem;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.4);
display: flex;
align-items: center;
justify-content: center;
gap: 8px;
}
button:hover {
transform: translateY(-3px);
box-shadow: 0 8px 20px rgba(126, 188, 255, 0.5);
}
button:active {
transform: translateY(1px);
}
.reset-btn {
background: linear-gradient(90deg, #63302b, #e63946);
}
.theory-explanation {
margin-top: 40px;
background: rgba(10, 15, 35, 0.7);
border-radius: 20px;
padding: 30px;
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5);
border: 2px solid rgba(100, 150, 255, 0.3);
}
.theory-explanation h2 {
color: #7ebcff;
margin-bottom: 25px;
text-align: center;
font-size: 2rem;
}
.theory-points {
display: flex;
flex-wrap: wrap;
gap: 25px;
margin-top: 20px;
}
.point {
flex: 1;
min-width: 250px;
background: rgba(20, 30, 60, 0.7);
padding: 20px;
border-radius: 15px;
border-left: 4px solid #ff7eee;
transition: transform 0.3s ease;
}
.point:hover {
transform: translateY(-5px);
box-shadow: 0 10px 25px rgba(126, 188, 255, 0.2);
}
.point h3 {
color: #ff7eee;
margin-bottom: 15px;
font-size: 1.3rem;
display: flex;
align-items: center;
gap: 10px;
}
.formula {
font-family: 'Cambria', serif;
font-style: italic;
text-align: center;
margin: 20px 0;
padding: 15px;
background: rgba(0, 0, 0, 0.3);
border-radius: 10px;
border: 2px solid rgba(100, 150, 255, 0.2);
font-size: 1.3rem;
color: #a0c4ff;
}
footer {
text-align: center;
margin-top: 50px;
padding: 25px;
font-size: 1rem;
opacity: 0.8;
border-top: 2px solid rgba(100, 150, 255, 0.3);
color: #a0c4ff;
}
@media (max-width: 768px) {
.content {
flex-direction: column;
}
.controls {
width: 100%;
}
h1 {
font-size: 2.4rem;
}
}
.legend {
position: absolute;
top: 20px;
right: 20px;
background: rgba(15, 20, 45, 0.85);
padding: 15px;
border-radius: 10px;
border: 2px solid rgba(100, 150, 255, 0.3);
z-index: 10;
}
.legend-item {
display: flex;
align-items: center;
margin-bottom: 10px;
}
.legend-color {
width: 20px;
height: 20px;
border-radius: 50%;
margin-right: 10px;
}
.energy-color { background: #ff3860; }
.space-color { background: #4d8aff; }
.matter-color { background: #b967ff; }
.generator-color { background: #ffffff; }
.connection-color { background: #ffd166; }
</style>
</head>
<body>
<div class="container">
<header>
<h1>几何统一理论可视化模拟器</h1>
<p class="subtitle">清晰标注版:直观展示能量、空间与物质的几何本质及其相互转化关系</p>
</header>
<div class="content">
<div class="canvas-container">
<h2 class="panel-title">宇宙几何画布(元素标注版)</h2>
<div class="legend">
<h3>图例说明</h3>
<div class="legend-item">
<div class="legend-color generator-color"></div>
<span>几何生成元 (G)</span>
</div>
<div class="legend-item">
<div class="legend-color connection-color"></div>
<span>代谢联络 (Γ)</span>
</div>
<div class="legend-item">
<div class="legend-color energy-color"></div>
<span>能量 (E)</span>
</div>
<div class="legend-item">
<div class="legend-color space-color"></div>
<span>空间 (S)</span>
</div>
<div class="legend-item">
<div class="legend-color matter-color"></div>
<span>物质 (M)</span>
</div>
</div>
<canvas id="universeCanvas"></canvas>
</div>
<div class="controls">
<h2 class="panel-title">理论控制面板</h2>
<div class="control-group">
<div class="control-label">
<span><span class="icon">ω</span>几何势 (ω)</span>
<span id="omega-value">0.75</span>
</div>
<div class="slider-container">
<input type="range" id="omega-slider" min="0" max="100" value="75">
</div>
<div class="value-display">控制宇宙基本结构强度</div>
</div>
<div class="control-group">
<div class="control-label">
<span><span class="icon">v</span>速度 (v/c)</span>
<span id="velocity-value">0.25</span>
</div>
<div class="slider-container">
<input type="range" id="velocity-slider" min="0" max="100" value="25">
</div>
<div class="value-display">当 v → 0 时,能量冻结为空间</div>
</div>
<div class="control-group">
<div class="control-label">
<span><span class="icon">R</span>曲率 (R)</span>
<span id="curvature-value">0.5</span>
</div>
<div class="slider-container">
<input type="range" id="curvature-slider" min="0" max="100" value="50">
</div>
<div class="value-display">曲率振荡表现为能量,零曲率形成空间</div>
</div>
<div class="control-group">
<div class="control-label">
<span><span class="icon">M</span>物质拓扑荷 (n)</span>
<span id="topology-value">3</span>
</div>
<div class="slider-container">
<input type="range" id="topology-slider" min="1" max="8" value="3">
</div>
<div class="value-display">M = n · h/c (n ∈ Z)</div>
</div>
<div class="button-group">
<button id="quantum-fluctuation">
<span class="icon"></span>量子涨落
</button>
<button id="double-slit">
<span class="icon"></span>双缝干涉
</button>
<button class="reset-btn" id="reset-btn">
<span class="icon"></span>重置模拟
</button>
</div>
</div>
</div>
<div class="theory-explanation">
<h2>几何统一理论核心概念</h2>
<div class="formula">G = e<sup>v</sup> · Γ = E ⊕ S ⊕ M</div>
<div class="theory-points">
<div class="point">
<h3><span class="icon"></span>几何本体定律</h3>
<p>宇宙的基本实体是几何势 ω,其微分产生代谢联络 Γ = dω</p>
<div class="formula">Γ = dω</div>
<p>Γ 决定了时空的几何结构,类比电磁理论中 F = dA</p>
</div>
<div class="point">
<h3><span class="icon"></span>存在形式定律</h3>
<p>万物是几何的三种表现形式:</p>
<ul>
<li>能量 ε = 1/2 R (曲率振荡)</li>
<li>空间 S = lim<sub>R→0</sub>Γ (零曲率冻结)</li>
<li>物质 M = (1/4π)∮<sub>V</sub>Γ (联络的拓扑荷)</li>
</ul>
</div>
<div class="point">
<h3><span class="icon"></span>动力学演化定律</h3>
<div class="formula">d(ε, S, M) = -κΓ</div>
<p>能量、空间、物质的演化由几何联络 Γ 驱动,其中 d 是外微分算子,κ 是霍奇对偶算子。</p>
</div>
</div>
</div>
<footer>
<p>几何统一理论宇宙模拟器 (c) 2023 | 万物皆几何:能量、空间、物质统一于几何本质</p>
<p>可视化标注版 - 清晰展示核心元素及其相互关系</p>
</footer>
</div>
<script>
// 获取Canvas元素和上下文
const canvas = document.getElementById('universeCanvas');
const ctx = canvas.getContext('2d');
// 设置Canvas大小
function resizeCanvas() {
canvas.width = canvas.parentElement.clientWidth - 40;
canvas.height = 500;
}
resizeCanvas();
window.addEventListener('resize', resizeCanvas);
// 模拟状态
let simulationState = {
omega: 0.75,
velocity: 0.25,
curvature: 0.5,
topology: 3,
quantumFluctuation: false,
doubleSlit: false,
time: 0
};
// 初始化控制元素
const omegaSlider = document.getElementById('omega-slider');
const velocitySlider = document.getElementById('velocity-slider');
const curvatureSlider = document.getElementById('curvature-slider');
const topologySlider = document.getElementById('topology-slider');
const omegaValue = document.getElementById('omega-value');
const velocityValue = document.getElementById('velocity-value');
const curvatureValue = document.getElementById('curvature-value');
const topologyValue = document.getElementById('topology-value');
const quantumBtn = document.getElementById('quantum-fluctuation');
const doubleSlitBtn = document.getElementById('double-slit');
const resetBtn = document.getElementById('reset-btn');
// 更新状态函数
function updateState() {
simulationState.omega = omegaSlider.value / 100;
simulationState.velocity = velocitySlider.value / 100;
simulationState.curvature = curvatureSlider.value / 100;
simulationState.topology = parseInt(topologySlider.value);
omegaValue.textContent = simulationState.omega.toFixed(2);
velocityValue.textContent = simulationState.velocity.toFixed(2);
curvatureValue.textContent = simulationState.curvature.toFixed(2);
topologyValue.textContent = simulationState.topology;
}
// 事件监听器
omegaSlider.addEventListener('input', updateState);
velocitySlider.addEventListener('input', updateState);
curvatureSlider.addEventListener('input', updateState);
topologySlider.addEventListener('input', updateState);
quantumBtn.addEventListener('click', () => {
simulationState.quantumFluctuation = !simulationState.quantumFluctuation;
quantumBtn.innerHTML = simulationState.quantumFluctuation ?
'<span class="icon"></span>量子涨落(开)' : '<span class="icon"></span>量子涨落(关)';
});
doubleSlitBtn.addEventListener('click', () => {
simulationState.doubleSlit = !simulationState.doubleSlit;
doubleSlitBtn.innerHTML = simulationState.doubleSlit ?
'<span class="icon"></span>双缝干涉(开)' : '<span class="icon"></span>双缝干涉(关)';
});
resetBtn.addEventListener('click', () => {
omegaSlider.value = 75;
velocitySlider.value = 25;
curvatureSlider.value = 50;
topologySlider.value = 3;
simulationState.quantumFluctuation = false;
simulationState.doubleSlit = false;
quantumBtn.innerHTML = '<span class="icon"></span>量子涨落';
doubleSlitBtn.innerHTML = '<span class="icon"></span>双缝干涉';
updateState();
});
// 初始更新状态
updateState();
// 绘制函数
function draw() {
// 清除画布
ctx.clearRect(0, 0, canvas.width, canvas.height);
// 更新模拟时间
simulationState.time += 0.02;
// 绘制几何势背景
drawGeometricPotential();
// 绘制几何生成元 (中心涡旋)
drawGenerator();
// 绘制联络曲线网络
drawConnectionNetwork();
// 根据速度绘制能量或空间
if (simulationState.velocity > 0.1) {
drawEnergyWaves();
} else {
drawSpaceGrid();
}
// 绘制物质拓扑纽结
drawTopologicalKnots();
// 绘制双缝干涉效果
if (simulationState.doubleSlit) {
drawDoubleSlit();
}
// 请求下一帧
requestAnimationFrame(draw);
}
// 绘制几何势背景
function drawGeometricPotential() {
const gradient = ctx.createRadialGradient(
canvas.width/2, canvas.height/2, 0,
canvas.width/2, canvas.height/2, canvas.width/2
);
gradient.addColorStop(0, `rgba(100, 70, 200, ${0.2 + simulationState.omega * 0.3})`);
gradient.addColorStop(0.7, `rgba(50, 30, 100, ${0.1 + simulationState.omega * 0.2})`);
gradient.addColorStop(1, 'rgba(10, 15, 35, 0.8)');
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, canvas.width, canvas.height);
// 添加背景标签
ctx.fillStyle = 'rgba(180, 180, 255, 0.2)';
ctx.font = 'italic 24px Arial';
ctx.textAlign = 'center';
ctx.fillText('几何势 ω', canvas.width/2, canvas.height/2);
}
// 绘制几何生成元(中心涡旋)
function drawGenerator() {
const centerX = canvas.width / 2;
const centerY = canvas.height / 2;
const baseRadius = 40 + simulationState.curvature * 30;
const pulse = Math.sin(simulationState.time) * 10;
const radius = baseRadius + pulse;
// 涡旋主体
const gradient = ctx.createRadialGradient(
centerX, centerY, radius * 0.3,
centerX, centerY, radius
);
gradient.addColorStop(0, 'rgba(255, 255, 255, 0.9)');
gradient.addColorStop(0.6, 'rgba(200, 150, 255, 0.6)');
gradient.addColorStop(1, 'rgba(100, 70, 200, 0.3)');
ctx.beginPath();
ctx.arc(centerX, centerY, radius, 0, Math.PI * 2);
ctx.fillStyle = gradient;
ctx.fill();
// 涡旋细节 - 螺旋
ctx.strokeStyle = 'rgba(255, 220, 255, 0.7)';
ctx.lineWidth = 2;
ctx.beginPath();
for (let i = 0; i < 5; i++) {
const startAngle = simulationState.time + i * Math.PI * 0.4;
ctx.arc(centerX, centerY, radius * 0.7, startAngle, startAngle + Math.PI * 1.8);
}
ctx.stroke();
// 绘制标签
ctx.fillStyle = 'rgba(255, 255, 255, 0.9)';
ctx.font = 'bold 20px Arial';
ctx.textAlign = 'center';
ctx.fillText('几何生成元 G', centerX, centerY + 6);
// 添加公式标签
ctx.fillStyle = 'rgba(200, 220, 255, 0.8)';
ctx.font = 'italic 16px Arial';
ctx.fillText('G = e · Γ', centerX, centerY + 40);
}
// 绘制联络曲线网络
function drawConnectionNetwork() {
const centerX = canvas.width / 2;
const centerY = canvas.height / 2;
const density = 15 + simulationState.omega * 10;
const lineCount = 20 + simulationState.omega * 20;
const fluctuation = simulationState.quantumFluctuation ? 3 : 0;
ctx.strokeStyle = `rgba(255, 200, 100, ${0.3 + simulationState.omega * 0.3})`;
ctx.lineWidth = 1.5;
for (let i = 0; i < lineCount; i++) {
const angle = (i / lineCount) * Math.PI * 2;
const length = 150 + Math.sin(simulationState.time + i) * 30;
const endX = centerX + Math.cos(angle) * length;
const endY = centerY + Math.sin(angle) * length;
// 添加量子涨落效果
const fluctuateX = Math.random() * fluctuation - fluctuation/2;
const fluctuateY = Math.random() * fluctuation - fluctuation/2;
ctx.beginPath();
ctx.moveTo(centerX, centerY);
ctx.bezierCurveTo(
centerX + Math.cos(angle + 0.3) * length * 0.3,
centerY + Math.sin(angle + 0.3) * length * 0.3,
centerX + Math.cos(angle - 0.3) * length * 0.6,
centerY + Math.sin(angle - 0.3) * length * 0.6,
endX + fluctuateX, endY + fluctuateY
);
ctx.stroke();
// 在曲线末端添加标签
if (i % 4 === 0) {
ctx.fillStyle = 'rgba(255, 220, 100, 0.9)';
ctx.font = 'bold 14px Arial';
ctx.textAlign = 'center';
ctx.fillText('联络 Γ', endX + fluctuateX, endY + fluctuateY - 15);
}
}
}
// 绘制能量波纹
function drawEnergyWaves() {
const centerX = canvas.width / 2;
const centerY = canvas.height / 2;
const maxRadius = Math.max(canvas.width, canvas.height) * 0.8;
const amplitude = 5 + simulationState.curvature * 30;
const frequency = 0.03;
// 绘制多个同心圆波纹
for (let r = 50; r < maxRadius; r += 20) {
ctx.beginPath();
// 绘制波动圆
for (let angle = 0; angle < Math.PI * 2; angle += 0.1) {
const wave = Math.sin(angle * 8 + simulationState.time * 2) * amplitude * (r/100);
const x = centerX + Math.cos(angle) * (r + wave);
const y = centerY + Math.sin(angle) * (r + wave);
if (angle === 0) {
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
}
ctx.closePath();
// 设置样式
const alpha = 0.4 - (r / maxRadius) * 0.3;
ctx.strokeStyle = `rgba(255, 50, 100, ${alpha})`;
ctx.lineWidth = 2;
ctx.stroke();
}
// 添加能量标签
ctx.fillStyle = 'rgba(255, 100, 120, 0.9)';
ctx.font = 'bold 28px Arial';
ctx.textAlign = 'center';
ctx.fillText('能量 E', centerX, centerY - 100);
ctx.fillStyle = 'rgba(255, 180, 190, 0.7)';
ctx.font = 'italic 16px Arial';
ctx.fillText('ε = 1/2 R (曲率振荡)', centerX, centerY - 70);
}
// 绘制空间网格
function drawSpaceGrid() {
const gridSize = 30 - simulationState.velocity * 20;
const alpha = 0.6 - simulationState.velocity * 0.5;
const fluctuation = simulationState.quantumFluctuation ? 3 : 0;
ctx.strokeStyle = `rgba(100, 150, 255, ${alpha})`;
ctx.lineWidth = 1;
// 绘制垂直线
for (let x = 0; x < canvas.width; x += gridSize) {
ctx.beginPath();
ctx.moveTo(x, 0);
for (let y = 0; y < canvas.height; y += 5) {
const wave = Math.sin(x * 0.1 + y * 0.05 + simulationState.time) * fluctuation;
ctx.lineTo(x + wave, y);
}
ctx.stroke();
}
// 绘制水平线
for (let y = 0; y < canvas.height; y += gridSize) {
ctx.beginPath();
ctx.moveTo(0, y);
for (let x = 0; x < canvas.width; x += 5) {
const wave = Math.sin(x * 0.05 + y * 0.1 + simulationState.time) * fluctuation;
ctx.lineTo(x, y + wave);
}
ctx.stroke();
}
// 添加空间标签
ctx.fillStyle = 'rgba(100, 180, 255, 0.9)';
ctx.font = 'bold 28px Arial';
ctx.textAlign = 'center';
ctx.fillText('空间 S', canvas.width/2, canvas.height/2 - 100);
ctx.fillStyle = 'rgba(180, 210, 255, 0.7)';
ctx.font = 'italic 16px Arial';
ctx.fillText('S = lim_{R→0}Γ (零曲率冻结)', canvas.width/2, canvas.height/2 - 70);
}
// 绘制物质拓扑纽结
function drawTopologicalKnots() {
const centerX = canvas.width / 2;
const centerY = canvas.height / 2;
const knots = simulationState.topology;
const size = 40 + simulationState.curvature * 20;
for (let i = 0; i < knots; i++) {
const angle = (i / knots) * Math.PI * 2 + simulationState.time * 0.5;
const distance = 150 + Math.sin(simulationState.time * 0.5 + i) * 30;
const x = centerX + Math.cos(angle) * distance;
const y = centerY + Math.sin(angle) * distance;
// 绘制拓扑纽结(环形)
ctx.beginPath();
ctx.arc(x, y, size, 0, Math.PI * 2);
const gradient = ctx.createRadialGradient(
x, y, size * 0.3,
x, y, size
);
gradient.addColorStop(0, 'rgba(200, 100, 255, 0.8)');
gradient.addColorStop(1, 'rgba(100, 50, 150, 0.3)');
ctx.fillStyle = gradient;
ctx.fill();
// 绘制纽结细节
ctx.strokeStyle = 'rgba(255, 200, 255, 0.7)';
ctx.lineWidth = 2;
ctx.beginPath();
ctx.arc(x, y, size * 0.7, 0, Math.PI * 2);
ctx.stroke();
// 绘制纽结扭曲
ctx.beginPath();
for (let j = 0; j < 3; j++) {
const startAngle = simulationState.time + j * Math.PI * 0.7;
ctx.arc(x, y, size * 0.5, startAngle, startAngle + Math.PI);
}
ctx.stroke();
// 绘制标签
ctx.fillStyle = 'rgba(255, 255, 255, 0.9)';
ctx.font = 'bold 16px Arial';
ctx.textAlign = 'center';
ctx.fillText(`物质 M${i+1}`, x, y + size + 25);
// 添加公式标签
ctx.fillStyle = 'rgba(220, 180, 255, 0.8)';
ctx.font = 'italic 14px Arial';
ctx.fillText(`M${i+1} = ${i+1}·h/c`, x, y + size + 45);
}
// 添加总体物质标签
ctx.fillStyle = 'rgba(180, 100, 255, 0.9)';
ctx.font = 'bold 24px Arial';
ctx.textAlign = 'center';
ctx.fillText('物质 M (拓扑扭曲态)', centerX, centerY + 180);
}
// 绘制双缝干涉效果
function drawDoubleSlit() {
const centerX = canvas.width / 2;
const centerY = canvas.height * 0.8;
const width = 300;
const height = 200;
// 绘制双缝
ctx.fillStyle = 'rgba(100, 100, 150, 0.7)';
ctx.fillRect(centerX - width/2, centerY, width, 10);
// 绘制缝隙
ctx.clearRect(centerX - 30, centerY, 20, 15);
ctx.clearRect(centerX + 10, centerY, 20, 15);
// 绘制干涉条纹
ctx.strokeStyle = 'rgba(100, 200, 255, 0.6)';
ctx.lineWidth = 2;
for (let i = 0; i < 10; i++) {
const y = centerY + 30 + i * 15;
const amplitude = 50 - i * 4;
ctx.beginPath();
ctx.moveTo(centerX - 150, y);
for (let x = centerX - 150; x < centerX + 150; x += 2) {
const wave = Math.sin(x * 0.1 + simulationState.time * 3) * amplitude * (1 - i/10);
ctx.lineTo(x, y + wave);
}
ctx.stroke();
}
// 绘制标签
ctx.fillStyle = 'rgba(200, 220, 255, 0.9)';
ctx.font = 'bold 16px Arial';
ctx.textAlign = 'center';
ctx.fillText('双缝干涉实验', centerX, centerY - 20);
ctx.fillStyle = 'rgba(180, 200, 255, 0.8)';
ctx.font = 'italic 14px Arial';
ctx.fillText('观测改变几何联络 → 波函数坍缩', centerX, centerY - 45);
}
// 启动绘制循环
draw();
</script>
</body>
</html>
相关推荐
- 用豆包生成的BMI计算器(豆包的热量是多少?)
-
<!DOCTYPEhtml><htmllang="en"><head><metacharset="UTF-8...
- Android 开发中文引导-应用小部件
-
应用小部件是可以嵌入其它应用(例如主屏幕)并收到定期更新的微型应用视图。这些视图在用户界面中被叫做小部件,并可以用应用小部件提供者发布。可以容纳其他应用部件的应用组件叫做应用部件的宿主(1)。下面的截...
- Qt推流(视频文件/视频流/摄像头/桌面转流媒体rtmp+hls+webrtc)
-
一、前言说明推流直播就是把采集阶段封包好的内容传输到服务器的过程。其实就是将现场的视频信号从手机端,电脑端,摄影机端打包传到服务器的过程。“推流”对网络要求比较高,如果网络不稳定,直播效果就会很差,观...
- 一看就会!谷歌广告转化跟踪详细设置指南来了
-
在出海推广业务中,投放广告最常见的目的是获取订单,但我们怎么知道有没有达成投放目的呢?谷歌转化跟踪技术就可以做到!熟悉谷歌的卖家朋友都知道,转化跟踪在最近几年变得越来越复杂了,虽然有很多选项可以自定义...
- Android原生编解码接口MediaCodec详解
-
作者:躬行之MediaCodec是Android中的编解码器组件,用来访问底层提供的编解码器,通常与MediaExtractor、MediaSync、MediaMuxer、MediaCrypt...
- 手把手搭建RTSP流媒体服务器(rtsp 流媒体)
-
0.引言本文主要讲解如何搭建RTSP流媒体服务器的过程,使用开源项目ZLMediaKit。通过这个开源项目,推RTSP流到服务器,然后拉流端可以拉取RTSP、RTMP等流。ZLMediaKit码云链接...
- MediaInfo 24.04.0 是一个关于多媒体文件的信息提供工具
-
MediaInfo24.04.0是一个关于多媒体文件的信息提供工具(仅当文件中包含信息时才提供):包括常规信息(标题、作者、导演、专辑、曲目编号、日期、时长等);视频信息(编解码器、画面比例、帧率...
- rmvb格式视频怎么打开,rmvb转MP4认准这个方法
-
一、rmvb是什么格式? RMVB是一种视频文件格式,其中的VB指的是可变比特率。比起上一代的RM格式,RMVB 格式的画面比较清晰,因为它是降低了静态画面下的比特率。 二、制作rmvb ①...
- 教你用Plex Media Server,把铁威马变成你的“私人好莱坞”!
-
TNAS(铁威马NAS)中可以安装多媒体服务器、影视、PlexMediaServer、EmbyServer作为个人媒体服务器使用。PlexMediaServer可以组织整理TNAS上的媒体...
- 你肯定用过!经典Windows软件被抛弃
-
Windows系统这些年持续更新的过程中,不断融入新的软件和功能的同时,一些经典的应用也渐渐成为了历史……Windows媒体播放器被抛弃Windows系统不断地推陈出新,一些老旧的组件也难免被抛弃,在...
- 博思得Q8标签打印全能手(博思得标签打印机安装教程)
-
2014-12-0905:35:00作者:宋达希【中关村在线办公打印频道原创】服装吊牌、洗涤标签、产品说明标签等都要用到标签打印机,这些标签涵盖多种尺寸的长度和宽度以及材质。另外作为一件商品或者产...
- flv文件用什么播放器打开,这样做不踩雷!
-
FLV是FLASHVIDEO的简称,是随着FlashMX的推出发展而来的视频格式。它的出现有效地解决了视频文件导入Flash后,使导出的SWF文件体积庞大,不能在网络上很好的使用等问题。一、...
- media player怎么转换格式?音频转换神器推荐!
-
Windowsmediaplayer怎么转换格式?WindowsMediaPlayer是微软公司出品的一款多媒体播放器,通常简称“WMP”。提供了编辑音频和视频文件的功能。用户可以使用该软件导...
- 视频参数检查工具更新:MediaInfo 23.10
-
MediaInfo提供有关视频或音频文件的技术和标签信息。信息示例包括编解码器、比特率、每秒帧数、宽度、高度、频道数、持续时间、标题、作者、字幕语言和章节名称。多种方式可以查看信息(文本、工作表、树和...
- 多媒体管理软件:JRiver Media Center 31.0.68 (64位)
-
JRiverMediaCenter64位是适用于大量库的完整媒体解决方案。它组织、播放和标记所有类型的媒体文件,并对Xbox、PS3、UPnP、DLNA和TiVo进行翻录、刻录。JRiverM...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML常用标签 (29)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- HTML button formtarget 属性 (30)
- CSS 水平对齐 (Horizontal Align) (30)