Google官方梳理,Android 多返回栈技术详解
zhezhongyun 2025-07-08 00:23 38 浏览
用户通过系统返回按钮导航回去的一组页面,在开发中被称为返回栈 (back stack)。多返回栈即一堆 "返回栈",对多返回栈的支持是在 Navigation 2.4.0-alpha01 和 Fragment 1.4.0-alpha01 中开始的。本文将为你展开多返回栈的技术详解。
系统返回按钮的乐趣
无论你在使用 Android 全新的 手势导航 还是传统的导航栏,用户的 "返回" 操作是 Android 用户体验中关键的一环,把握好返回功能的设计可以使应用更加贴近整个生态系统。
在最简单的应用场景中,系统返回按钮仅仅 finish 你的 Activity。在过去你可能需要覆写 Activity 的 onBackPressed() 方法来自定义返回操作,而在 2021 年你无需再这样操作。我们已经在 OnBackPressedDispatcher 中提供了 针对自定义返回导航的 API。实际上这与 FragmentManager 和 NavController 中 已经 添加的 API 相同。
这意味着当你使用 Fragments 或 Navigation 时,它们会通过 来确保你调用了它们返回栈的 API,系统的返回按钮会将你推入返回栈的页面逐层返回。
多返回栈不会改变这个基本逻辑。系统的返回按钮仍然是一个单向指令 —— "返回"。这对多返回栈 API 的实现机制有深远影响。
Fragment 中的多返回栈
在 surface 层级,对于 多返回栈的支持 貌似很直接,但其实需要额外解释一下 "Fragment 返回栈" 到底是什么。FragmentManager 的返回栈其实包含的不是 Fragment,而是由 Fragment 事务组成的。更准确地说,是由那些调用了 addToBackStack(String name) API 的事务组成的。
这就意味着当你调用 commit() 提交了一个调用过 addToBackStack() 方法的 Fragment 事务时,FragmentManager 会执行所有你在事务中所指定的操作 (比如 替换操作),从而将每个 Fragment 转换为预期的状态。然后 会将该事务作为它返回栈的一部分。
当你调用 popBackStack() 方法时 (无论是直接调用,还是通过系统返回键以 内部机制调用),Fragment 返回栈的最上层事务会从栈中弹出 -- 比如新添加的 Fragment 会被移除,隐藏的 Fragment 会显示。这会使得 恢复到最初提交 Fragment 事务之前的状态。
也就是说 变成了销毁操作: 任何已添加的 Fragment 在事务被弹出的时候都会丢失它的状态。换言之,你会失去视图的状态,任何所保存的实例状态 (Saved Instance State),并且任何绑定到该 Fragment 的 ViewModel 实例都会被清除。这也是该 API 和新的saveBackStack() 方法之间的主要区别。 可以实现弹出事务所实现的返回效果,此外它还可以确保视图状态、已保存的实例状态,以及 ViewModel 实例能够在销毁时被保存。这使得 restoreBackStack() API 后续可以通过已保存的状态重建这些事务和它们的 Fragment,并且高效 "重现" 已保存的全部细节。太神奇了!
而实现这个目的必须要解决大量技术上的问题。
排除 Fragment 在技术上的障碍
虽然 Fragment 总是会保存 Fragment 的视图状态,但是 Fragment 的 onSaveInstanceState() 方法只有在 Activity 的 onSaveInstanceState() 被调用时才会被调用。为了能够保证调用 saveBackStack() 时 SavedInstanceState 会被保存,我们 还 需要在 Fragment 生命周期切换的正确时机注入对 onSaveInstanceState() 的调用。我们不能调用得太早 (你的 Fragment 不应该在 STARTED 状态下保存状态),也不能调用得太晚 (你需要在 Fragment 被销毁之前保存状态)。
这样的前提条件就开启了需要 解决 FragmentManager 转换到对应状态的问题,以此来保障有一个地方能够将 Fragment 转换为所需状态,并且处理可重入行为和 Fragment 内部的状态转换。
在 Fragment 的重构工作进行了 6 个月,进行了 35 次修改时,发现 Postponed Fragment 功能已经严重损坏,这一问题使得被推迟的事务处于一个中间状态 —— 既没有被提交也并不是未被提交。之后的 65 个修改和 5 个月的时间里,我们几乎重写了 管理状态、延迟状态切换和动画的内部代码,具体请参见我们之前的文章《全新的 Fragment: 使用新的状态管理器》。
Fragment 中值得期待的地方
随着技术问题的逐步解决,包括更加可靠和更易理解的 ,我们新增加了两个 API: 和 。
如果你不使用这些新增 API,则一切照旧: 单个 返回栈和之前的功能相同。现有的 保持不变 —— 你可以将 name 赋值为 null 或者任意 。然而,当你使用多返回栈时, 的作用就非常重要了: 在你调用 和之后的 方法时,它将作为 Fragment 事务的唯一的 key。
举个例子,会更容易理解。比如你已经添加了一个初始的 Fragment 到 Activity,然后提交了两个事务,每个事务中包含一个单独的 replace 操作:
// 这是用户看到的初始的 Fragment
fragmentManager.commit {
setReorderingAllowed(true)
replace<HomeFragment>(R.id.fragment_container)
}
// 然后,响应用户操作,我们在返回栈中增加了两个事务
fragmentManager.commit {
setReorderingAllowed(true)
replace<ProfileFragment>(R.id.)
addToBackStack(“profile”)
}
fragmentManager.commit {
setReorderingAllowed(true)
replace<EditProfileFragment>(R.id.)
addToBackStack(“edit_profile”)
}也就是说我们的 FragmentManager 会变成这样:
△ 提交三次之后的 FragmentManager 的状态
比如说我们希望将 profile 页换出返回栈,然后切换到通知 Fragment。这就需要调用 并且紧跟一个新的事务:
fragmentManager.saveBackStack("profile")
fragmentManager.commit {
setReorderingAllowed(true)
replace<NotificationsFragment>(R.id.)
addToBackStack("notifications")
}现在我们添加 ProfileFragment 的事务和添加 EditProfileFragment 的事务都保存在 "profile" 关键字下。这些 Fragment 已经完全将状态保存,并且 会随同事务状态一起保持它们的状态。很重要的一点: 这些 Fragment 的实例并不在内存中或者在 中 —— 存在的仅仅只有状态 (以及任何以 ViewModel 实例形式存在的非配置状态)。
△ 我们保存 profile 返回栈并且添加一个新的 commit 后的 FragmentManager 状态
替换回来非常简单: 我们可以在 事务中同样调用 saveBackStack() 操作,然后调用 :
fragmentManager.saveBackStack(“notifications”)
fragmentManager.restoreBackStack(“profile”)这两个堆栈项高效地交换了位置:
△ 交换堆栈项后的 FragmentManager 状态
维持一个单独且活跃的返回栈并且将事务在其中交换,这保证了当返回按钮被点击时, 和系统的其他部分可以保持一致的响应。实际上,整个逻辑并未改变,同之前一样,仍然弹出 Fragment 返回栈的最后一个事务。
这些 API 都特意按照最小化设计,尽管它们会产生潜在的影响。这使得开发者可以基于这些接口设计自己的结构,而无需通过任何非常规的方式保存 Fragment 的视图状态、已保存的实例状态、非配置的状态。
当然了,如果你不希望在这些 API 之上构建你的框架,那么可以使用我们所提供的框架进行开发。
使用 Navigation 将多返回栈适配到任意屏幕类型
Navigation Component 最初 是作为通用运行时组件进行开发的,其中不涉及 View、Fragment、Composable 或者其他屏幕显示相关类型及你可能会在 Activity 中实现的 "目的地界面"。然而,NavHost 接口 的实现中需要考虑这些内容,通过它添加一个或者多个 Navigator 实例时,这些实例 确实 清楚如何与特定类型的目的地进行交互。
这也就意味着与 Fragment 的交互逻辑全部封装在了 navigation-fragment 开发库和它其中的 FragmentNavigator 与 DialogFragmentNavigator 中。类似的,与 Composable 的交互逻辑被封装在完全独立的 navigation-compose 开发库和它的 ComposeNavigator 中。这里的抽象设计意味着如果你希望仅仅通过 Composable 构建你的应用,那么当你使用 Navigation Compose 时无需任何涉及到 Fragment 的依赖。
该级别的分离意味着 Navigation 中有两个层次来实现多返回栈:
- 保存独立的 NavBackStackEntry 实例状态,这些实例组成了 NavController 返回栈。这是属于 的职责。
- 保存 Navigator 针对每个 的特定状态 (比如与 目的地相关联的 Fragment)。这是属于 Navigator 的职责。
仍需特别注意那些 尚未 更新的 ,它们无法支持保存自身状态。底层的 API 已经整体重写来支持状态保存 (你需要覆写新增的 navigate() 和 API 的重载方法,而不是覆写之前的版本),即使 并未更新, 仍会保存 的状态 (在 Jetpack 世界中向后兼容是非常重要的)。
备注: 通过绑定 TestNavigatorState 使其成为一个 mini-NavController 可以实现在新的 API 上更轻松、独立地测试你自定义的 。
如果你仅仅在应用中使用 Navigation,那么 这个层面更多的是实现细节,而不是你需要直接与之交互的内容。可以这么说,我们已经完成了将 和 迁移到新的 Navigator API 的工作,使其能够正确地保存和恢复它们的状态,在这个层面上你无需再做任何额外工作。
在 Navigation 中启用多返回栈
如果你正在使用 NavigationUI,它是用于连接你的 到 Material 视图组件的一系列专用助手,你会发现对于菜单项、BottomNavigationView (现在叫 NavigationRailView) 和 NavigationView,多返回栈是 默认启用 的。这就意味着结合 和 navigation-ui 使用就可以。
NavigationUI API 是基于 Navigation 的其他公共 API 构建的,确保你可以准确地为自定义组件构建你自己的版本。保证你可以构建所需的自定义组件。启用保存和恢复返回栈的 API 也不例外,在 Navigation XML 中通过 NavOptions 上的新 API,也就是 navOptions Kotlin DSL,以及 的重载方法可以帮助你指定 pop 操作保存状态或者指定 navigate 操作来恢复之前已保存的状态。
比如,在 Compose 中,任何全局的导航模式 (无论是底部导航栏、导航边栏、抽屉式导航栏或者任何你能想到的形式) 都可以使用我们在与 底部导航栏集成 所介绍的相同的技术,并且结合 saveState 和 restoreState 属性一起调用 :
onClick = {
navController.navigate(screen.route) {
// 当用户选择子项时在返回栈中弹出到导航图中的起始目的地
// 来避免太过臃肿的目的地堆栈
popUpTo(navController.graph.findStartDestination().id) {
saveState = true
}
// 当重复选择相同项时避免相同目的地的多重拷贝
launchSingleTop = true
// 当重复选择之前已经选择的项时恢复状态
restoreState = true
}
}保存状态,锁定用户
对用户来说,最令人沮丧的事情之一便是丢失之前的状态。这也是为什么 Fragment 用一整页来讲解 保存与 Fragment 相关的状态,而且也是我非常乐于更新每个层级来支持多返回栈的原因之一:
- Fragments (比如完全不使用 Navigation Component): 通过使用新的 API,也就是 saveBackStack 和 restoreBackStack。
- 核心的 Navigation 运行时: 添加可选的新的 方法用于 (恢复状态) 和 (保存状态) 以及新的 popBackStack() 的重载方法,它同样可以传入一个布尔型的 参数 (默认是 false)。
- 通过 Fragment 实现 Navigation: 现在利用新的 NavigatorAPI,通过使用 Navigation 运行时 API 将 Navigation 运行时 API 转换为 Fragment API。
- : 每当它们弹出返回栈时,onNavDestinationSelected()、NavigationBarView.setupWithNavController() 和 NavigationView.setupWithNavController() 现在默认使用 restoreState 和 saveState 这两个新的 NavOption。也就意味着 当升级到 Navigation 2.4.0-alpha01 或者更高版本后,任何使用 NavigationUI API 的应用无需修改代码即可实现多返回栈。
如果你希望了解 更多使用该 API 的示例,请参考 NavigationAdvancedSample (它是最新更新的,且不包含任何用于支持多返回栈的 NavigationExtensions 代码)。
对于 Navigation Compose 的示例,请参考 Tivi。
如果你遇到任何问题,请使用官方的问题追踪页面提交关于 Fragment 或者 Navigation 的 bug,我们会尽快处理。
本文由码农老K原创,欢迎关注,我们一起长知识!
相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
