百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

使用AI CoNR 算法,仅仅利用4张动漫图片——便可以创建舞蹈视频

zhezhongyun 2025-03-30 23:14 12 浏览

上期视频我们分享了一个AI算法,本期我们就分享一下实现代码

AI算法太牛了,利用4张图片,便可以生成惟妙惟肖的音乐舞蹈

此AI算法称之为CoNR该技术通过基于多个动画指定姿势来创建舞蹈视频。

——1——

什么是CoNR?

下面是CoNR的示意图。将目标姿势 ( Itar ) 转换为由紧凑地标数字表示的 UDP 表示 ( Ptar)

另一方面,几个动画(Sref)输入到 U-Net 格式网络,由Encoder 编码,并由 Decoder 与 UPD 表示(Ptar)一起解码。此时,通过共享多个解码器 D1 到 D3的权重来创建目标姿势动画。

CoNR

源代码 https://github.com/megvii-research/CONR

CoNR

——2——

代码实现

#@title Repo 初始化
#@markdown 克隆github上的项目repo,并安装相应的依赖。
!git clone https://github.com/megvii-research/CoNR.git
%cd CoNR
!pip install -r requirements.txt
#下载权重
/content/CoNR/weights
From: https://drive.google.com/uc?id=1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx
To: /content/CoNR/weights/rgbadecodernet.pth
From: https://drive.google.com/uc?id=1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0
To: /content/CoNR/weights/shader.pth
From: https://drive.google.com/uc?id=1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i
To: /content/CoNR/weights/target_pose_encoder.pth
From: https://drive.google.com/uc?id=19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm
To: /content/CoNR/weights/udpparsernet.pth

Step1:首先是copy github的源代码,并安装需要的第三方包与预训练权重,这样,我们就初始化完成了整个项目。

UDP = 'double_ponytail' #@param ['double_ponytail', 'short_hair', 'self_defined']
#@markdown 下载示例超密集姿势序列
if UDP == 'short_hair':
  %cd ..
  !gdown https://drive.google.com/uc?id=11HMSaEkN__QiAZSnCuaM6GI143xo62KO
  !unzip short_hair.zip
  !mv short_hair/ poses/
  !ls
elif UDP == 'double_ponytail':
  %cd ..
  !gdown https://drive.google.com/uc?id=1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q
  !unzip double_ponytail.zip
  !mv double_ponytail/ poses/
  !ls
else:
  print("Please upload your UDP sequences or poses images to /content/CoNR/poses/ .")
character = 'double_ponytail' #@param ['double_ponytail', 'short_hair', 'self_defined']
From: https://drive.google.com/uc?id=1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc
To: /content/CoNR/double_ponytail_images.zip

Step2:代码需要选择一个超密集姿势,这里官方提供两个示例序列:`双马尾:double_ponytail`和`短发:short_hair`。当然,我们自己也可以制作自己的动漫图片,并上传自己的超密集姿势序列或者姿势图像到路径`/content/CoNR/poses/`下.

Step3:选择人物设定表,人物设定表指的是某一个人物多角度/姿势下的手绘图片。官方提供两种示例人物设定表:`双马尾:double_ponytail`和`短发:short_hair`。当然我们也可以选择`自定义:self_defined`并上传自己绘制的人物设定表到路径`
/content/CoNR/character_sheet/`下。人物设定表中的人应当是同一个人,且应当和超密集姿势序列尽可能相似,否则生成结果将不可控。例如,对于短发的超密集姿势序列,推荐您使用短发的人物设定表作为输入。

import cv2
import numpy as np
import os

path ='/content/CoNR/character_sheet/'
files= os.listdir(path)
imgs = []
for file in files:
     if not os.path.isdir(file):
          img = cv2.imread(path+"/"+file, cv2.IMREAD_UNCHANGED);
          imgs.append(img)
print("Num of character sheets:", len(imgs))
imgs = np.concatenate(imgs, 1)
cv2.imwrite('character_sheet.png', imgs)

from IPython.display import Image
Image(filename='character_sheet.png') 
!mkdir results
!python3 -m torch.distributed.launch \
--nproc_per_node=1 train.py --mode=test \
--world_size=1 --dataloaders=2 \
--test_input_poses_images=./poses/ \
--test_input_person_images=./character_sheet/ \
--test_output_dir=./results/ \
--test_checkpoint_dir=./weights/ 

Step4:图片,模型设置完成后,我们就可以进行模型的推理计算了,此模型根据输入的图片生成一系列动漫舞蹈图片,当然这些图片都是连贯的,我们只需要把这些图片使用ffmpeg来制作成视频即可,此模型运行需要很长时间,当然根据个人的电脑配置,本例程运行在Google colab上面,根据你的运行条件,每个人的运行时间不一样,当然你随时可以中断模型运行,使用模型中断前已经生成的图片,便可以制作舞蹈视频了,只是视频长度较短

!ffmpeg -r 30 -y -i ./results/%d.png -r 30 -c:v libx264 output.mp4 -r 30
from IPython.display import HTML
from base64 import b64encode
 
def show_video(video_path, video_width = 600):
  video_file = open(video_path, "r+b").read()
  video_url = f"data:video/mp4;base64,{b64encode(video_file).decode()}"
  return HTML(f"""""")
 
show_video('output.mp4')

Step5:最后,我们使用ffmpeg把模型生成的系列图片来制作成动漫视频,最后,我们预览一下生成的视频即可,当然,生成的视频,可以下载到本地,方便后期进行处理

当然也有在线版本,把人物舞蹈的视频,实时转换成动漫视频,这个可以自行尝试

Transormer模型重点介绍了encoder与decoder,有6个编码器与6个解码器组成,其Transormer模型主要应用在NLP领域,但是随着Transormer模型的大火,其模型成功应用在了CV计算机视觉领域,其Transormer模型,Vision Transormer模型,SWIN Transormer模型都会在如下专栏进行详细动画分享

相关推荐

JPA实体类注解,看这篇就全会了

基本注解@Entity标注于实体类声明语句之前,指出该Java类为实体类,将映射到指定的数据库表。name(可选):实体名称。缺省为实体类的非限定名称。该名称用于引用查询中的实体。不与@Tab...

Dify教程02 - Dify+Deepseek零代码赋能,普通人也能开发AI应用

开始今天的教程之前,先解决昨天遇到的一个问题,docker安装Dify的时候有个报错,进入Dify面板的时候会出现“InternalServerError”的提示,log日志报错:S3_USE_A...

用离散标记重塑人体姿态:VQ-VAE实现关键点组合关系编码

在人体姿态估计领域,传统方法通常将关键点作为基本处理单元,这些关键点在人体骨架结构上代表关节位置(如肘部、膝盖和头部)的空间坐标。现有模型对这些关键点的预测主要采用两种范式:直接通过坐标回归或间接通过...

B 客户端流RPC (clientstream Client Stream)

客户端编写一系列消息并将其发送到服务器,同样使用提供的流。一旦客户端写完消息,它就等待服务器读取消息并返回响应gRPC再次保证了单个RPC调用中的消息排序在客户端流RPC模式中,客户端会发送多个请...

我的模型我做主02——训练自己的大模型:简易入门指南

模型训练往往需要较高的配置,为了满足友友们的好奇心,这里我们不要内存,不要gpu,用最简单的方式,让大家感受一下什么是模型训练。基于你的硬件配置,我们可以设计一个完全在CPU上运行的简易模型训练方案。...

开源项目MessageNest打造个性化消息推送平台多种通知方式

今天介绍一个开源项目,MessageNest-可以打造个性化消息推送平台,整合邮件、钉钉、企业微信等多种通知方式。定制你的消息,让通知方式更灵活多样。开源地址:https://github.c...

使用投机规则API加快页面加载速度

当今的网络用户要求快速导航,从一个页面移动到另一个页面时应尽量减少延迟。投机规则应用程序接口(SpeculationRulesAPI)的出现改变了网络应用程序接口(WebAPI)领域的游戏规则。...

JSONP安全攻防技术

关于JSONPJSONP全称是JSONwithPadding,是基于JSON格式的为解决跨域请求资源而产生的解决方案。它的基本原理是利用HTML的元素标签,远程调用JSON文件来实现数据传递。如果...

大数据Doris(六):编译 Doris遇到的问题

编译Doris遇到的问题一、js_generator.cc:(.text+0xfc3c):undefinedreferenceto`well_known_types_js’查找Doris...

网页内嵌PDF获取的办法

最近女王大人为了通过某认证考试,交了2000RMB,官方居然没有给线下教材资料,直接给的是在线教材,教材是PDF的但是是内嵌在网页内,可惜却没有给具体的PDF地址,无法下载,看到女王大人一点点的截图保...

印度女孩被邻居家客人性骚扰,父亲上门警告,反被围殴致死

微信的规则进行了调整希望大家看完故事多点“在看”,喜欢的话也点个分享和赞这样事儿君的推送才能继续出现在你的订阅列表里才能继续跟大家分享每个开怀大笑或拍案惊奇的好故事啦~话说只要稍微关注新闻的人,应该...

下周重要财经数据日程一览 (1229-0103)

下周焦点全球制造业PMI美国消费者信心指数美国首申失业救济人数值得注意的是,下周一希腊还将举行第三轮总统选举需要谷歌日历同步及部分智能手机(安卓,iPhone)同步日历功能的朋友请点击此链接,数据公布...

PyTorch 深度学习实战(38):注意力机制全面解析

在上一篇文章中,我们探讨了分布式训练实战。本文将深入解析注意力机制的完整发展历程,从最初的Seq2Seq模型到革命性的Transformer架构。我们将使用PyTorch实现2个关键阶段的注意力机制变...

聊聊Spring AI的EmbeddingModel

序本文主要研究一下SpringAI的EmbeddingModelEmbeddingModelspring-ai-core/src/main/java/org/springframework/ai/e...

前端分享-少年了解过iframe么

iframe就像是HTML的「内嵌画布」,允许在页面中加载独立网页,如同在画布上叠加另一幅动态画卷。核心特性包括:独立上下文:每个iframe都拥有独立的DOM/CSS/JS环境(类似浏...