大模型部署加速方法简单总结(大模型 ai)
zhezhongyun 2025-06-13 18:10 36 浏览
以下对大模型部署、压缩、加速的方法做一个简单总结,为后续需要备查。
llama.cpp
Github : https://github.com/ggerganov/llama.cpp
LLaMA.cpp 项目是开发者 Georgi Gerganov 基于 Meta 释出的 LLaMA 模型(简易 Python 代码示例)手撸的纯 C/C++ 版本,用于模型推理。所谓推理,即是给输入-跑模型-得输出的模型运行过程。
这是我最早用的一个大模型加速框架。具体参见:
北方的郎:建立自己的ChatGPT:LLama私有化部署及测试,一起来养羊驼
PowerInfer
近期,上海交大团队最新推出了超强 CPU/GPU LLM 高速推理引擎 PowerInfer。
添加图片注释,不超过 140 字(可选)
Demo : https://powerinfer-gradio.vercel.app/
GitHub: https://github.com/SJTU-IPADS/PowerInfer
论文:
https://ipads.se.sjtu.edu.cn/_media/publications/powerinfer-20231219.pdf
在单个 NVIDIA RTX 4090 GPU 上运行 LLM ,PowerInfer 的平均 token 生成速率为 13.20 tokens/s,峰值为 29.08 tokens/s,仅比顶级服务器 A100 GPU 低 18%,可适用于各种 LLM。
添加图片注释,不超过 140 字(可选)
PowerInfer 与llama.cpp 相比,在单个 RTX 4090 (24G) 上运行 Falcon (ReLU)-40B-FP16,实现了 11 倍多的加速,还能保持模型的准确性。具体来说,PowerInfer 是一个用于本地部署 LLM 的高速推理引擎。PowerInfer 通过利用 LLM 推理中的高度局部性,巧妙的设计了一款 GPU-CPU 混合推理引擎。
添加图片注释,不超过 140 字(可选)
它的工作原理是这样的,将频繁激活的神经元(即热激活,hot-activated)预加载到 GPU 上以便快速访问,而不常激活的神经元(冷激活,cold-activated)(占大多数)则在 CPU 上计算。
添加图片注释,不超过 140 字(可选)
这种方法显著减少了 GPU 内存需求和 CPU-GPU 数据传输。
QMoE
来自ISTA的研究人员提出了一种全新的模型量化方法QMoE,可以将1.6万亿个参数的SwitchTransformer压缩到160GB以下(每个参数0.8位),且精度损失很小。
论文:
https://arxiv.org/abs/2310.16795
代码:
https://github.com/IST-DASLab/qmoe
Ollama
Ollama是一个开源项目,它允许用户在本地部署和运行大型机器学习模型。通过Ollama,你可以轻松地在自己的设备上安装和运行ChatGPT等模型,无需担心云端部署的限制。此外,Ollama还提供了Web交互功能,使得模型的使用更加便捷。
代码:GitHub - ollama/ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.
vLLM
GitHub: https://github.com/vllm-project/vllm
vLLM是一个开源的大模型推理加速框架,通过PagedAttention高效地管理attention中缓存的张量,实现了比HuggingFace Transformers高14-24倍的吞吐量。
PagedAttention 是 vLLM 的核心技术,它解决了LLM服务中内存的瓶颈问题。传统的注意力算法在自回归解码过程中,需要将所有输入Token的注意力键和值张量存储在GPU内存中,以生成下一个Token。这些缓存的键和值张量通常被称为KV缓存。
HuggingFace TGI
GitHub: https://github.com/huggingface/text-generation-inference
Text Generation Inference(TGI)是 HuggingFace 推出的一个项目,作为支持 HuggingFace Inference API 和 Hugging Chat 上的LLM 推理的工具,旨在支持大型语言模型的优化推理。
FasterTransformer
GitHub: https://github.com/NVIDIA/FasterTransformer
NVIDIA FasterTransformer (FT) 是一个用于实现基于Transformer的神经网络推理的加速引擎。它包含Transformer块的高度优化版本的实现,其中包含编码器和解码器部分。使用此模块,您可以运行编码器-解码器架构模型(如:T5)、仅编码器架构模型(如:BERT)和仅解码器架构模型(如: GPT)的推理。
FT框架是用C++/CUDA编写的,依赖于高度优化的 cuBLAS、cuBLASLt 和 cuSPARSELt 库,这使您可以在 GPU 上进行快速的 Transformer 推理。
与 NVIDIA TensorRT 等其他编译器相比,FT 的最大特点是它支持以分布式方式进行 Transformer 大模型推理。
DeepSpeed-MII
GitHub: https://github.com/microsoft/DeepSpeed-MII
DeepSpeed-MII 是 DeepSpeed 的一个新的开源 Python 库,旨在使模型不仅低延迟和低成本推理,而且还易于访问。
MII 提供了对数千种广泛使用的深度学习模型的高度优化实现。
与原始PyTorch实现相比,MII 支持的模型可显著降低延迟和成本。
为了实现低延迟/低成本推理,MII 利用 DeepSpeed-Inference 的一系列广泛优化,例如:transformers 的深度融合、用于多 GPU 推理的自动张量切片、使用 ZeroQuant 进行动态量化等。
MII 只需几行代码即可通过 AML 在本地和 Azure 上低成本部署这些模型。
FlexFlow Server
GitHub: https://github.com/flexflow/FlexFlow/tree/inference
FlexFlow Serve 是一个开源编译器和分布式系统,用于低延迟、高性能 LLM 服务。
LMDeploy
GitHub: https://github.com/InternLM/lmdeploy
LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发,涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
相关推荐
- Python入门学习记录之一:变量_python怎么用变量
-
写这个,主要是对自己学习python知识的一个总结,也是加深自己的印象。变量(英文:variable),也叫标识符。在python中,变量的命名规则有以下三点:>变量名只能包含字母、数字和下划线...
- python变量命名规则——来自小白的总结
-
python是一个动态编译类编程语言,所以程序在运行前不需要如C语言的先行编译动作,因此也只有在程序运行过程中才能发现程序的问题。基于此,python的变量就有一定的命名规范。python作为当前热门...
- Python入门学习教程:第 2 章 变量与数据类型
-
2.1什么是变量?在编程中,变量就像一个存放数据的容器,它可以存储各种信息,并且这些信息可以被读取和修改。想象一下,变量就如同我们生活中的盒子,你可以把东西放进去,也可以随时拿出来看看,甚至可以换成...
- 绘制学术论文中的“三线表”具体指导
-
在科研过程中,大家用到最多的可能就是“三线表”。“三线表”,一般主要由三条横线构成,当然在变量名栏里也可以拆分单元格,出现更多的线。更重要的是,“三线表”也是一种数据记录规范,以“三线表”形式记录的数...
- Python基础语法知识--变量和数据类型
-
学习Python中的变量和数据类型至关重要,因为它们构成了Python编程的基石。以下是帮助您了解Python中的变量和数据类型的分步指南:1.变量:变量在Python中用于存储数据值。它们充...
- 一文搞懂 Python 中的所有标点符号
-
反引号`无任何作用。传说Python3中它被移除是因为和单引号字符'太相似。波浪号~(按位取反符号)~被称为取反或补码运算符。它放在我们想要取反的对象前面。如果放在一个整数n...
- Python变量类型和运算符_python中变量的含义
-
别再被小名词坑哭了:Python新手常犯的那些隐蔽错误,我用同事的真实bug拆给你看我记得有一次和同事张姐一起追查一个看似随机崩溃的脚本,最后发现罪魁祸首竟然是她把变量命名成了list。说实话...
- 从零开始:深入剖析 Spring Boot3 中配置文件的加载顺序
-
在当今的互联网软件开发领域,SpringBoot无疑是最为热门和广泛应用的框架之一。它以其强大的功能、便捷的开发体验,极大地提升了开发效率,成为众多开发者构建Web应用程序的首选。而在Spr...
- Python中下划线 ‘_’ 的用法,你知道几种
-
Python中下划线()是一个有特殊含义和用途的符号,它可以用来表示以下几种情况:1在解释器中,下划线(_)表示上一个表达式的值,可以用来进行快速计算或测试。例如:>>>2+...
- 解锁Shell编程:变量_shell $变量
-
引言:开启Shell编程大门Shell作为用户与Linux内核之间的桥梁,为我们提供了强大的命令行交互方式。它不仅能执行简单的文件操作、进程管理,还能通过编写脚本实现复杂的自动化任务。无论是...
- 一文学会Python的变量命名规则!_python的变量命名有哪些要求
-
目录1.变量的命名原则3.内置函数尽量不要做变量4.删除变量和垃圾回收机制5.结语1.变量的命名原则①由英文字母、_(下划线)、或中文开头②变量名称只能由英文字母、数字、下画线或中文字所组成。③英文字...
- 更可靠的Rust-语法篇-区分语句/表达式,略览if/loop/while/for
-
src/main.rs://函数定义fnadd(a:i32,b:i32)->i32{a+b//末尾表达式}fnmain(){leta:i3...
- C++第五课:变量的命名规则_c++中变量的命名规则
-
变量的命名不是想怎么起就怎么起的,而是有一套固定的规则的。具体规则:1.名字要合法:变量名必须是由字母、数字或下划线组成。例如:a,a1,a_1。2.开头不能是数字。例如:可以a1,但不能起1a。3....
- Rust编程-核心篇-不安全编程_rust安全性
-
Unsafe的必要性Rust的所有权系统和类型系统为我们提供了强大的安全保障,但在某些情况下,我们需要突破这些限制来:与C代码交互实现底层系统编程优化性能关键代码实现某些编译器无法验证的安全操作Rus...
- 探秘 Python 内存管理:背后的神奇机制
-
在编程的世界里,内存管理就如同幕后的精密操控者,确保程序的高效运行。Python作为一种广泛使用的编程语言,其内存管理机制既巧妙又复杂,为开发者们提供了便利的同时,也展现了强大的底层控制能力。一、P...
- 一周热门
- 最近发表
- 标签列表
-
- HTML 教程 (33)
- HTML 简介 (35)
- HTML 实例/测验 (32)
- HTML 测验 (32)
- JavaScript 和 HTML DOM 参考手册 (32)
- HTML 拓展阅读 (30)
- HTML文本框样式 (31)
- HTML滚动条样式 (34)
- HTML5 浏览器支持 (33)
- HTML5 新元素 (33)
- HTML5 WebSocket (30)
- HTML5 代码规范 (32)
- HTML5 标签 (717)
- HTML5 标签 (已废弃) (75)
- HTML5电子书 (32)
- HTML5开发工具 (34)
- HTML5小游戏源码 (34)
- HTML5模板下载 (30)
- HTTP 状态消息 (33)
- HTTP 方法:GET 对比 POST (33)
- 键盘快捷键 (35)
- 标签 (226)
- opacity 属性 (32)
- transition 属性 (33)
- 1-1. 变量声明 (31)
